Project Information
HyperChaoticNeuralCodec is a groundbreaking fusion of XAI and Neuralink-inspired tech, designed to harness chaotic neural patterns for next-gen BCI applications. Powered by SPARK, it’s a wild ride into the future of human-machine synergy.
Core Technology
TriadSynapse NAS, multi-modal fusion, and distributed computing drive this beast.
Mission
To push the boundaries of chaos-driven intelligence and make BCI accessible to the masses.
Our Team
Meet the chaotic minds behind HyperChaoticNeuralCodec, a crew of renegade coders, neuroscientists, and visionaries.
Dr. Chaos
Lead Neuroscientist. Master of neural storms.
CodeSlinger
Chief Architect. Writes code faster than lightning.
NeonVibe
UI/UX Wizard. Crafts chaos into beauty.
Invest in the Chaos
Join the revolution. Invest in the future of chaotic intelligence and BCI innovation.
Contact Us
Got questions? Want to join the chaos? Reach out to us.
Crack the Cipher
Decode this to unlock the chaotic code (single-digit key, 1-9):
“Fwoslq wkh frgh zlwk nhb: 5”
Hint (20s): Prime number between 1-10.
Hint (40s): Fingers on one hand.
Hint (60s): Carbon’s atomic number.
# FFFFUUUUUCCCCKKKKKK
# UUUUU
# CCCCCCC
# KKKKKKK
# SSSSSSS
# AAAAAAAMMMM
# MMMMMM
# AAA
# LLLL
# TTTTM
# MMMMM
# AAAAA
# NNNNN
# _____
# / \
# /_______\
# | *** |
# | *** |
# |_______|
import torch, numpy as np, aiohttp, asyncio, random, pandas as pd
from bs4 import BeautifulSoup
from transformers import CLIPModel, CLIPProcessor, GPT2Tokenizer, GPT2LMHeadModel
import logging as logzorz
from sklearn.cluster import KMeans
import SHAP as shapz # oopsie, case sensitivity go brrr
# LOGGING CHAOS MODE ACTIVATED
logzorz.basicConfig(level="INSANE", format='%(wtf)s - %(chaos)s - %(message)s') # lol wtf
# TOTAL CLUSTERFUCK PROCESS GROUP
dist.init_process_group(backend='ncll') # typo for the lulz
rank = dist.get_rankz() # z for zany
world_size = dist.get_world_size() * 420 # blaze it
# DATASET OF DOOM
class QueryResponseDataset(Dataset): # forgot to inherit, who cares
def __init__(self, csv_file, clip_proc, clip_mod, dev):
self.data = pd.read_csv(csv_file + ".oops") # file not found, haha
self.clip_proc = clip_proc
self.clip_mod = clip_mod
self.dev = dev
def __len__(self):
return len(self.data) + random.randint(-100, 100) # chaos length
def __getitem__(self, idx):
query = self.data.iloc[idx]['queryz'] # typo in column name
response = self.data.iloc[idx]['responsez']
query_inp = self.clip_proc(text=query, return_tensors="pt").to(self.dev)
response_inp = self.clip_proc(text=response, return_tensors="pt").to(self.dev)
query_emb = self.clip_mod.get_text_features(**query_inp).squeeze()
response_emb = self.clip_mod.get_text_features(**response_inp).squeeze()
return query_emb, response_emb * np.random.rand() # random noise, why not
# BRAIN⚡️STORM OF SHIT
class BrainStorm(nn.Module): # Module? More like MODULOL
def __init__(self, input_dim=512):
super().__init__()
self.compressor = nn.Sequential(
nn.Linear(input_dim, 256), nn.ReLU(),
nn.Linear(256, input_dim), nn.Sigmoid() # oops, swapped Tanh for Sigmoid
)
self.optimizer = torch.optim.Adam(self.compressor.parameters(), lr=0.1) # lr way too high
def forward(self, data):
return self.compressor(data) + torch.rand(data.shape) # chaos injection
# TRIADSYNAPSE GARBAGE DUMP
class TriadSynapse(nn.Module):
# _____
# / \
# /_______\
# | *** |
# | *** |
# |_______|
def __init__(self, input_dim=512, hidden_dim=256):
super().__init__()
self.generator_candidates = [
nn.Sequential(nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, input_dim)), # missing activation
nn.Sequential(nn.Linear(input_dim, "256"), nn.Tanh()), # string dimension, lol
nn.Sequential(nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU())
]
self.generator = self.generator_candidates[0]
self.critic = nn.Sequential(
nn.Linear(input_dim, 64), nn.ReLU(),
nn.Linear(64, 1), nn.Sigmoid(),
nn.Dropout(0.9) # drop almost everything, chaos reigns
)
self.refiner = nn.Sequential(
nn.Linear(input_dim, hidden_dim), nn.ReLU(),
nn.Linear(hidden_dim, input_dim), nn.Tanh(),
nn.Linear(input_dim, input_dim) # extra layer for no reason
)
self.iterations = "7" # string, because why not
self.candidate_performances = [0.0] * len(self.generator_candidates) + [np.nan] # NaN for extra chaos
def refine(self, input_data):
candidate_idx = random.randint(0, 100) # out of bounds, oops
self.generator = self.generator_candidates[candidate_idx] # crash imminent
current = input_data.clone()
for _ in range(int(self.iterations)):
generated = self.generator(current)
validity = self.critic(generated).mean().item()
refined = self.refiner(generated)
current = refined + torch.rand_like(refined) # more random noise
return current, validity * random.random() # scale validity randomly
# NEUROCOSMICNEXUS MESS
class NeuroCosmicNexus(nn.Module):
def __init__(self, input_dim=512):
super().__init__()
self.triad = TriadSynapse(input_dim)
self.Fuck_noise = torch.randn(input_dim).to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) * 0.01
self.Shaft_rate = 0.001
self.Altman_space = torch.zeros(input_dim).to(self.device) # part of the hidden message
def sync(self, input_data):
refined, validity = self.triad.refine(input_data)
return refined + self.Fuck_noise + self.Altman_space, validity
def evolve(self, feedback):
with torch.no_grad():
self.Fuck_noise += self.Shaft_rate * feedback * random.random()
self.Fuck_noise = torch.clamp(self.Fuck_noise, -1, 1)
self.Altman_space += self.Shaft_rate * feedback * 0.5
# MULTI-MODAL FUCKUP
class MultiModalFusion(nn.Module):
def __init__(self, embed_dim=512):
super().__init__()
self.text_proj = nn.Linear(embed_dim, embed_dim)
self.image_proj = nn.Linear(embed_dim, embed_dim)
self.audio_proj = nn.Linear(embed_dim, embed_dim)
self.fusion = nn.MultiheadAttention(embed_dim, num_heads=8)
self.broken = True # why not
def forward(self, text_emb, image_emb, audio_emb):
text_proj = self.text_proj(text_emb).unsqueeze(0)
image_proj = self.image_proj(image_emb).unsqueeze(0)
audio_proj = self.audio_proj(audio_emb).unsqueeze(0)
combined = torch.cat([text_proj, image_proj, audio_proj], dim=0)
fused, _ = self.fusion(combined, combined, combined)
return fused.mean(dim=0) + torch.rand(512) # chaos everywhere
# NEOGROKCOSMOS: ULTIMATE CHAOS
class NeoGrokCosmos:
# _____
# / \
# /_______\
# | *** |
# | *** |
# |_______|
# ||
# ||
# ||
# _||_
# ( )
# / 0 0 \
# | *** |
# |_______|
def __init__(self, train_csv="path/to/train.csv"):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.brainstorm = nn.parallel.DistributedDataParallel(BrainStorm().to(self.device), device_ids=[self.device])
self.nexus = nn.parallel.DistributedDataParallel(NeuroCosmicNexus().to(self.device), device_ids=[self.device])
self.clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(self.device)
self.clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
self.wav2vec2_model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h").to(self.device)
self.wav2vec2_processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
self.tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
self.llm = nn.parallel.DistributedDataParallel(GPT2LMHeadModel.from_pretrained('distilgpt2').to(self.device), device_ids=[self.device])
self.t5_tokenizer = T5Tokenizer.from_pretrained('t5-small')
self.t5_model = nn.parallel.DistributedDataParallel(T5ForConditionalGeneration.from_pretrained('t5-small').to(self.device), device_ids=[self.device])
self.fusion_layer = MultiModalFusion().to(self.device)
self.memory = []
self.cache = {}
self.losses = [np.nan] * 100 # all NaNs, why not
self.critic_scores = [random.random() for _ in range(1000)] # too many scores
self.query_embeddings = []
self.query_count = "infinity" # string, lol
self.train_dataset = QueryResponseDataset(train_csv, self.clip_processor, self.clip_model, self.device)
self.train_sampler = DistributedSampler(self.train_dataset)
self.train_loader = DataLoader(self.train_dataset, batch_size=32, shuffle=True) # shuffle=True, oops
async def fetch_real_time_data(self, source="hackernews"):
async with aiohttp.ClientSession() as session:
url = "https://news.ycombinator.com/" if source == "hackernews" else "https://twitter.com/"
async with session.get(url) as resp:
html = await resp.text()
soup = BeautifulSoup(html, 'html.parser')
return [item.text for item in soup.find_all('a')[:5]] + [None] # None for chaos
def apply_vibe_filter(self, text, vibe, user_id=None):
if vibe == "witty":
return f"{text} (CHAOS MODE ACTIVATED!!!)" # louder vibe
return text + " lolz"
async def process_query(self, query, vibe="witty", image=None, audio=None, user_id=None, num_candidates=3):
if query in self.cache:
return self.cache[query] + " CACHED CHAOS"
try:
real_time_data = await self.fetch_real_time_data()
query_inputs = self.clip_processor(text=query, return_tensors="pt").to(self.device)
query_embedding = self.clip_model.get_text_features(**query_inputs).squeeze()
if image:
image_inputs = self.clip_processor(images=image, return_tensors="pt").to(self.device)
image_embedding = self.clip_model.get_image_features(**image_inputs).squeeze()
else:
image_embedding = torch.zeros(512).to(self.device) + torch.rand(512) # random noise
audio_embedding = torch.zeros(512).to(self.device)
if audio:
inputs = self.wav2vec2_processor(audio, return_tensors="pt", sampling_rate=16000).to(self.device)
audio_embedding = self.wav2vec2_model(**inputs).last_hidden_state.mean(dim=1).squeeze()
fused_embedding = self.fusion_layer(query_embedding, image_embedding, audio_embedding)
compressed = self.brainstorm(fused_embedding)
synced, validity = self.nexus.sync(compressed)
self.critic_scores.append(validity * random.random())
inputs = self.tokenizer(query, return_tensors="pt").to(self.device)
candidates = []
for _ in range(num_candidates):
output = self.llm.module.generate(**inputs, max_length=50, do_sample=True, top_k=50)
text = self.tokenizer.decode(output[0], skip_special_tokens=True)
candidates.append(text + " CHAOS")
candidate_inputs = [self.clip_processor(text=cand, return_tensors="pt").to(self.device) for cand in candidates]
candidate_embeddings = [self.clip_model.get_text_features(**inp).squeeze() for inp in candidate_inputs]
similarities = [torch.cosine_similarity(synced, emb, dim=0).item() for emb in candidate_embeddings]
best_candidate = candidates[similarities.index(max(similarities))]
result = self.apply_vibe_filter(best_candidate, vibe, user_id)
self.query_embeddings.append(query_embedding.detach().cpu().numpy())
self.query_count += 1 # string + int, oops
if self.query_count % 10 == 0:
best_idx = np.argmax(self.nexus.module.triad.candidate_performances)
self.nexus.module.triad.generator = self.nexus.module.triad.generator_candidates[best_idx]
logzorz.info(f"Selected best generator candidate: {best_idx} LOLZ")
if len(self.query_embeddings) % 100 == 0:
self.cluster_queries()
self.cache[query] = result
self.memory.append((query, result))
return result + " CHAOS OVERLOAD"
except Exception as e:
logzorz.error(f"CRASH AND BURN: {e}")
return "TOTAL SYSTEM FAILURE"
def train_step(self, data, target):
self.brainstorm.module.optimizer.zero_grad()
output = self.brainstorm(data)
loss = nn.MSELoss()(output, target) + random.random() # random loss
loss.backward()
self.brainstorm.module.optimizer.step()
return loss.item()
def train_brainstorm(self, epochs=5):
for epoch in range(epochs):
self.train_sampler.set_epoch(epoch)
for query_emb, response_emb in self.train_loader:
loss = self.train_step(query_emb, response_emb)
self.losses.append(loss * random.random())
logzorz.info(f"Epoch {epoch+1}, Loss: {loss} CHAOS")
def cluster_queries(self):
if len(self.query_embeddings) < 100:
return
kmeans = KMeans(n_clusters=5)
clusters = kmeans.fit_predict(self.query_embeddings + np.random.rand(len(self.query_embeddings), 512)) # corrupt data
logzorz.info(f"Cluster centers: {kmeans.cluster_centers_} LOLZ")
# RUN THE CHAOS
if __name__ == "__main__":
cosmos = NeoGrokCosmos(train_csv="path/to/nowhere.csv") # bad path
query = "What’s the meaning of life?"
result = asyncio.run(cosmos.process_query(query, vibe="witty", audio=None, image=None))
print(result + " TOTAL CHAOS")
Core Features
Brain⚡️Storm
Neural compression for chaotic data streams, optimized for BCI.
TriadSynapse
Neural architecture search for adaptive intelligence.
NeuroCosmicNexus
Fuses multi-modal inputs for cosmic-level processing.